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REVIEW

Review of Geopolymer Technology,
Barriers and Limitations

Abdullah Kadhim a,*, Bushra Salman Mankhi a, Muslim Al-Bujasim b

a Department of Civil Engineering, College of Engineering, Al-Qasim Green University, Babylon, 51013, Iraq
b Hasad Omnnea Company for Food Products, Babylon, 51001, Iraq

ABSTRACT

Geopolymers are kind of inorganic polymeric green materials, which are considered alternatives
to some traditional cementitious materials. Geopolymerisation involves reaction between amount
of solid materials rich of high reactive amorphous or semi-amorphous silica and alumina in the
existence of alkaline medium (Na2O or K2O) to formulate tri-dimensional alumina-silicate poly-
meric strong network. The present research is targeting to review Geopolymer technology and the
major barriers and limitations that impede the implementation and development of Geopolymer
technology. The review based on the reports, statistics and the opinions of the construction
industry stakeholders, in addition to the past literatures to assess the potential barriers. The results
of the research showed number of substantial barriers that still exist. Parameters such as alkaline
sources, variety in the Al-Si source materials and the mix design details are mainly the target of
this review. These including substantial decrease in the produced amounts of main Geopolymer
precursors such as pulverised fly ash (PFA) and slags in the next 10 years due to new regulations
regarding the decrease of the greenhouse gas releases. Other barriers including the difficulties
in the mix fabrication, efflorescence and the absence of the standards and specifications for this
technology. Some novel solutions are suggested for future research interests.

Keywords: Geopolymer, Geopolymer commercialisation, Alkali activated materials

1. Introduction

Manufactured concrete forms one of the most versatile construction materials that has
been utilised worldwide. Concrete represents the best choice for a wide range of appli-
cations such as housing, bridges, highway pavements, manufacturing, water-containing
and retaining structures. The current world production of the Ordinary Portland Cement
(OPC) is growing up to 4.1 billion metric tonnes in 2017 [1]. The use of Portland cement
in concrete construction is under serious evaluation because of substantial challenges are
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facing the method of production conventional cement. Firstly, the energy consumption
through the whole process. Secondly, The high quantity of carbon dioxide gas (CO2)
released to the atmosphere through the production of cement [2]. (OPC) is fundamentally
resulting from calcination of limestone (calcium carbonate) and silica rich clays up to
1450 °C which make (OPC) is environmentally not sustainable.

Therefore, two directions of explorations are being developed. The first one includes the
use of new technologies and processes but keeping raw materials same. For instant, the
utilisation of alternative fuels such as biomass fuels and fuels derived from waste materials
instead of the normal fuel, however, not all fuel can reduce CO2 emissions and can derive
the cost and energy up [3].

The second direction comprises of using new methods and raw materials different from
the raw materials that are used in producing (OPC). Low carbon cements and binders are
encouraging alternatives to (OPC). Low Carbone cements started originally by substituting
either fine aggregate with alternatives with less production energy [4–6] or replacing
various ratios of supplementary cementitious materials (SCM) with (OPC) to generate what
is called blended cements in order to reduce the produced (OPC) and up to 50% to produce
a cement binder that has same performance of (OPC) [7–10]. SCM are including natural
pozzolanic and industrial wastes and by-product materials that have substantial properties
to behave as cementitious materials such as Pulverised Fly Ash (PFA), Ground Granulated
Blast Slag (GGBS) and Metakaolin (MK). Large volumes of wastes and by-products that are
non-recyclable are generated every year from different locations around the world. Some
industrial wastes cannot be disposed or landfilled as it can lead to environmental problems
with great damage to the soils, plants and animals. In addition, landfills generating
hydrological threat and pollution to the ground water. Incineration treatment has worse
effects even with the huge attempts to reduce the pollutants but still pose great polluters
compared to other disposing method [11].

Alternatively, there are noteworthy investigations to develop other types of green ce-
ments that entirely free of (OPC) and based principally on green raw materials [12, 13].
Mineral Products Association (MPA) in UK listed number of novel (non-Portland) cements
with low energy in their fact sheet [14]. For example, CSA (calcium sulfo-aluminate)-belite
cements are used in the industrial sector in China for about 35 years. CSA cement is
manufactures by heating/sintering wastes such as fly ash, gypsum and limestone at 1200
C-1250 C in kilns. However, when comparing with OPC CEM 1, the energy savings are just
25% as maximum with CO2 emissions reductions around 20%.

One of these novel green cements is Geopolymer cement. Geopolymer cement synthe-
sised through Geopolymerisation innovative chemical reaction. The resulted product has
excellent features as high early strength, high resistance to elevated temperature and
aggressive conditions. Geopolymerisation involves reaction between amount of solid mate-
rials rich of high reactive amorphous or semi-amorphous silica and alumina in the existence
of alkaline medium (Na2O or K2O) to formulate tri-dimensional alumina-silicate polymeric
strong network [15–19]. Although Geopolymer has substantial advantages but still has
not been used widespread in the glob due many problems and limitations. Therefore, the
current review is directed to evaluate the main barriers that facing the use of Geopolymer
cement and giving suggested solutions.

1.1. Geopolymer background and terminology

Geopolymer technology is a term given to the reaction of the solid Al-Si materials in
an alkaline medium. Davidovits [20, 21] coined Geopolymer term on the 3D Al-Si chains
synthesized with the existence of (Na2O, K2O, etc.). However, the early attempts with these
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materials started in Ukraine through 1950’s by Glukhovsky [22] where it was originally
called “soil silicate concretes” or “soil cements” and encompasses calcium silicate hydrate
(CSH) and (Al-Si) phases. Provis [23] revealed that Geopolymers are types of the alkali-
activated binders that are resulted from the reaction of solid Si-Al with highly concentrated
aqueous alkali hydroxide or silicate solution to produce in general alkali alumina-silicate
materials and suggested that all these materials preferably to be termed an ‘inorganic
polymers’. Krivenko [24] named geocements on the structure formation processes in
the alkaline alumina-silicate binders corresponded to the zeolites, which are geological
transformations of alumina-silicate volcanic rocks in the presence of alkaline solutions at
low temperatures (below 200–300 °C, depending on a zeolite type). Davidovits explained in
the Geopolymer Camp (2016) that Alkali-Activated Materials (AAM) are not Polymers and
they cannot be termed Geopolymer. Geopolymers are not subset of (AAM) because they are
not a calcium hydrate alternative and does not have (N-A-S-H) or (K-A-S-H) hydrates [25].
Moreover, Davidovits clarified that alkali activation is different from Geopolymerisation
reaction because there is nothing to activate and the start materials of the Geopolymer
are already reactive materials and the process preferably to called alkalination as there is
no Geopolymer activator but it’s called “reagent” or “hardener”. With all these different
names and terminologies, the system and the internal structure of the product materials is
remaining the same with alkali-alumina-silicate products, which are connected with strong
bonds to yield good properties.

Geopolymer binders started recently to gain great consideration in the construction
sectors. Geopolymer cement (GPC) is one of the favorable choices to be a satisfactory
alternative to the Ordinary Portland cement (OPC). It is now already used in the industrial
sectors in UK, USA and Australia. However, there still substantial barriers and obstacles
towards the real applications of Geopolymer cement as it still used just in the pre-cast
elements. Several factors forms significant issues that inhibits the widespread of this
innovative technology.

2. Method

The current paper is aiming to evaluate and review the main barriers and the difficulties
that exist in the current Geopolymer synthesis process. The study will depend on the past
investigations and the technical reports that are published so far of the recent develop-
ment of Geopolymer technology, as Geopolymer concrete synthesis depending on several
variables. Therefore, some of these variables will be evaluated to check which one has the
most impact on limiting (GPC) from being wide spread in the industrial sector. Factors
such as alkaline sources, variety in the Al-Si source materials and the mix design details
will mainly be the target of this review.

3. Geopolymer synthesis process

Geopolymerisation include alkaline source and solid alumina-silicate raw material in
order to form the polymeric final chains. The reaction is exothermic process that is carried
out through oligomers (dimer, trimer) which provide the actual unit structures for the
three-dimensional macromolecular network. Once the Al-Si powder is mixed with the
alkaline solution, a paste forms and quickly transforms into a hard Geopolymer. Therefore,
there is no sufficient time and space for the gel or paste to grow into well-crystallised
structure which is the fundamental difference between zeolite and Geopolymer [16, 26].
Fig. 1 illustrate the major stages of Geopolymerisation reaction. The mechanism of
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Fig. 1. Geopolymerisation stages.

Geopolymerisation may be varied depending on the source materials that the Geopolymer
synthesised.

By the end of the reaction, the final Geopolymerisation chemical equation [16].

n
(
Si2O5, Al2O2

)
+ 2nSiO2 + 4nH2O+ NaOH or (KOH)
→ Na+, K+ + n(OH)3 − Si− O− Al− − O− Si− (OH)3

|

(OH)2
(Geopolymer Precursor)

(1)

The final geopolymeric product could be one of the following depending on the Si:Al
atomic ratio as shown in Table 1 [27, 28].

Past studies listed the main factors and parameters that can affect the Geopolymerisation
[29, 30]:

1. The weight ratio of alumino-silicate powder to alkaline solution and preferably in
range (3.0–5.5).

2. The alkaline material type and amount.
3. The molar ratio Si/M controls the nature and quantity of the siliceous species.
4. When the alkaline material is notably reactive, this enables a fast oligomer formation

and, consequently govern the Geopolymerisation reaction and the final performances
of the materials.

Table 1. Geopolymer products.

Atomic ratio
Si:Al Chemical group Chemical formation

1 sialate, poly(sialate) -Si-O-Al-O-
2 sialate-siloxo, poly(sialate-siloxo) -Si-O-Al-O-Si-O
3 sialate-disiloxo, poly(sialate-disiloxo) -Si-O-Al-O-Si-O-Si-O-
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5. It is observed that the workability as well as compressive strength of Geopolymer
mortar increases with increase in concentration of alkaline medium in terms of
molarity.

6. The SiO2/M2O molar ratio of the activating solution.

3.1. Geopolymer system

The conventional method of producing Geopolymer involves two main parts, which are
the raw materials that form the source of Al-Si. The second part forms the source of
alkali, which normally is an alkali (Na, K, Ca. . .) or silicate hydroxide. Table 2 shows
the categories of the start raw materials that usually been examined by past studies.
The most widely known alumina-silicate source that has been used as a raw material in
Geopolymer cement is ground granulated blast furnace slag (GGBS) which is a by-product
waste material produced from iron manufacture. Extensive laboratory studies have used
(GGBS) in their Geopolymer cement formation [19, 31–35]. Despite the advantages of
GGBFS, it is reported that the increase of GGBS percentage results in reducing the initial
setting time and the workability of the mixture, which makes the Geopolymer cement
inefficient for mixing, transporting and finishing [19, 36]. GGBS supplies a clear source of
alumina-silicate, but carries a high price in many markets and so drives up cost [17].

Among others, fly ash has been used in formulating Geopolymer cement [37–41] and
these studies proved that fly ash offered similar characters and properties of GGBS in terms
of the mechanical and some durability properties but increased the setting time. However,
using fly ash can have disadvantages such as more air-entraining agent requirements to
give the mix the desired air content when finer fly ash with high carbon content is used.
This is in addition to high permeability, cracking and shrinkage, alkali aggregate resistance
issues and low carbonation resistance [42, 43]. GGBFS and PFA are the most promising
raw materials that have been used in GPC manufacturing due to their high content of (Al
and Si) which can be easily activated. However, in reality, there are many obstacles related
to the long-term usage of these precursors in GPC production. The most significant issue
is the availability in terms of the location and the amount of these materials available in
local areas. Recent implications are that there is a high risk related to the production and
availability of these main raw materials, which forms the main barrier in implementing
GPC [17, 44–47]. Latest work on Geopolymer cement concentrated on using metakaolin
(calcined kaolin) which contains pure kaolin or what is called (China clay) [48, 49]. These
studies showed that metakaolin based Geopolymer concrete has high compression strength
and low permeability. Many Recent studies argued that the use of metakaolin as a binder
has many drawbacks such as the difficulty and the cost of extraction and production of
metakaolin [50]. In addition, the unfeasibly relating to high water demand due to the
high porosity of GPC based metakaolin mix design is a significant negative aspect as well
[17, 51]. Other sources of alumina-silicate materials have been examined by several studies
to check their suitability as Geopolymer precursors. Biomass ashes are new promising
sources of pozzolanic materials rich of alumina and silicate. Some of these materials need
to be treated and processed to increase their reactivity. A study [52] investigated the effect
of sugar cane straw ash (SCSA) as solid precursor on the alkali-activated binders based on

Table 2. Geopolymer precursor’s categories.

Natural pozzolans All alumina-silicate minerals such as (kaolinite, Bentonite and mining tailings)
Industrial waste (by-products) Fly ash, bottom as, slags and metakaolin
Municipal waste Glass waste, paper waste construction waste and air pollution residues (APC)
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Table 3. Geopolymer synthesis using different precursors.

Study Type of precursor Findings

Chindaprasirt and
Rattanasak [53]

fluidized bed combustion (FBC) ash
pulverized coal combustion (PCC) fly ash
Sodium silicate (Na2SiO3) and 10 M
sodium hydroxide (NaOH) solutions

high strength Geopolymer mortars of
35.0–44.0 MPa.

Detphan and
Chindaprasirt
[54]

fly ash (FA) and rice husk ash (RHA)
sodium hydroxide (NaOH), sodium
silicate

compressive strengths are between
12.5–56.0 MPa and are dependent on
the Ratio of FA/RHA, the RHA
fineness, and the ratio of sodium
silicate to NaOH.

López, Sugita [55] metakaolin (MK) and rice husk ash (RHA)
NaOH and Na2SiO3 molar ratio,
Na2O/SiO2 = 0.25

silica obtained from rice husk
combustion at 700 °C became to be
raw material for geopolymers and
significantly contributed to the
formation of geopolymer matrix with
MK.

Ahmari and Zhang
[56]

copper mine tailings and cement kiln dust
(CKD) sodium hydroxide (NaOH) (10 and
15 M)

significant improvement of unconfined
compressive strength UCS of bricks
and durability when CKD is used

Bashar, Alengaram
[57]

Palm oil fuel ash (POFA), fly-ash (FA),
blast-furnace-slag (BFS) sodium
hydroxide (NaOH) solution and liquid
sodium silicate (Na2SiO3)

The calcium rich-BFS increased
compressive strength and 50% POFA
with BFS produced 28 day
compressive strength of 58 MPa.

Sun, Cui [58] Waste ceramic and alkali hydroxides and/or
sodium/potassium silicate solutions

higher compressive strength of 75.6
MPa after heat treatment of 1000 °C

Vafaei and
Allahverdi [59]

Waste-glass powder and calcium aluminate
Cements CACs, solutions of sodium
hydroxide and sodium silicate with
different Na2O contents as alkali
activators

Hydrothermally cured mortars of
optimum composition exhibited
strengths up to 87 MPa.

blast furnace slag (BFS) and NaOH and a mixture of NaOH + sodium silicate solutions,
SiO2/Na2O ratios (ε) of 0 and 0.75 respectively, were assessed as activating solutions. They
found that (SCSA) worked well with (BFS) in H2O/Na2O ratio between 22 and 37. It was
noticed that the best compressive strength with solid precursor proportion for BFS/SCSA
was 75/25. Table 3 shows number of the studies that used different types of Geopolymer
precursors and their findings.

4. Geopolymer strength

The compressive strength of geopolymer cement is a key attribute that varies widely
based on raw materials, mix design, and curing conditions. With proper optimization,
geopolymer cement can achieve high compressive strengths, making it a viable and
sustainable alternative to traditional Portland cement in many construction applications.
For specific applications, it is essential to tailor the mix design and curing process to meet
the required performance criteria.

In a study by Al-Azzawi et al. [90] on Fly Ash-Geopolymer Concrete (FA-GPC), different
fly ashes with varying Si/Al ratios (1.58, 1.66, 2.44, 2.57, and 5.08) were examined.
The fly ash with a Si/Al ratio of 1.66 showed the highest compressive strength at
34 MPa compared to other fly ashes, indicating that the chemical composition of fly
ash influences the geopolymerisation process and ultimately affects the strength of the



54 AL-MUSTAQBAL JOURNAL OF SUSTAIN. IN ENG. SCIENCES 2024;2:48–60

concrete mixtures. Furthermore, Singhal et al. [91] found that while the concrete’s
molarity remained unchanged, adding more fly ash to the mixture enhanced its com-
pressive strength in FA-GPC. For instance, at a molarity of 16 M, the fly ash content
increased from 350 kg/m3 to 375 and 400 kg/m3, accordingly, at the ambient curing
age of 7 days, and at the age of 28 days, the compressive strength improved by 11%
and 32%.

5. Geopolymer barriers and limitations

Geopolymer Concrete is generally thought to be an innovative material, which is a
sustainable alternative to traditional Portland cement. It is very resistant to several of
the aggressive environment conditions such as sulphate and chloride attack [60–62]. It
is considered eco-friendly by cutting the greenhouse gases such as the carbon dioxide
emissions by 80% when compared to Ordinary Portland cement [18]. A comparison
conducted between OPC and GPC has indicated a 70% reduction in CO2 emissions [63].
It has been reported that Geopolymer Concrete has (44–64)% lower CO2 emissions than
OPC [64]. Geopolymer Concrete strengthens quickly at room temperature and affords
compressive strength in the range of 20 MPa after only 4 hours at 20 °C when tested under
the conditions applied to hydraulic binder mortars. After 28 days, compressive strength is
in the range of 70–100 MPa [65, 66]. Geopolymer Concrete will cure more rapidly than
Portland concretes as it may cure at ambient temperature and gains most of its strength
within 24 hours [38, 67]. Furthermore, Geopolymer Concrete has very high resistance
to elevated temperatures, particularly when incorporating rich (Al and Si) raw materials
[68]. Its thermal performance is dependent on the concentration of the alkaline activator
(KOH, NaOH, etc.) within Geopolymer Concrete [69, 70].

On the other hand, the activator solutions of alumina-silicate material used to form
the geopolymerisation represents a real concern with Geopolymer Concrete. The acti-
vator solutions provide the highest single contribution to the embodied carbon dioxide
of Geopolymer Concrete [64, 71, 72]. The activator solutions chemicals derive from
procedures that make intensive use of resources and energy. The economic analyses of
Geopolymer Concrete have shown that the sodium silicate and potassium silicate activators
contribute significantly to the total production costs of Geopolymer Concrete [44, 73, 74].
The main difficulty with Geopolymer technology is the use of liquid alkaline activating
solutions, which are categorized as extremely corrosive materials. From an operational
viewpoint, they are difficult and expensive to handle with significant occupational health
and safety concerns [75].

The efflorescence problem is another example of the unwanted issues associated with
Geopolymer Concrete. Zheng, Van Deventer [76] realised such issues and the alkaline-
silicate solutions cannot be entirely consumed throughout the Geopolymerisation process.
This causes severe efflorescence with high permeability and water absorption due to
the movement of alkali together with water to the geopolymer surfaces. Despite this,
in the several hundred alkaline activated concrete binders-related papers published in
Scopus/Elsevier journals, less than ten addressed in some way the efflorescence problem
and of those, only three focused directly on the problem [77].

Furthermore, other barriers include the untrusted availability of the solid raw materials
of Geopolymer. For instance, in UK there will be substantial decrease in the produced
amounts of pulverized fly ash (PFA) and slags in the next 10 years due to the UK’s new
regulations regarding the decrease of the greenhouse gas releases by at least 80% by 2050
[47].



AL-MUSTAQBAL JOURNAL OF SUSTAIN. IN ENG. SCIENCES 2024;2:48–60 55

Past research [78, 79] listed several technical and commercial barriers that are facing
Geopolymer technology;

• The complexity of alumina-silicate materials, the final product gel chemistry synthesis
and the phase formation compared to the C-S-H gel in OPC.

• Absence of an in-service record of accomplishment equivalent in scale and stability of
OPC.

• Lack of research to validate durability-testing methodology and improve Geopolymer
cement technology.

• Lack of understanding micro/Nanostructure of Geopolymer gel.
• The difficulty of designing the alkali activators compositions.
• Technical challenges in scaling up-Geopolymer synthesis from laboratory to the real-

world and construction industry.
• Geopolymer commercialisation requires vast regulatory, asset management, liability

and industry stakeholder engagement process.
• Variability in raw materials properties and characterisations.
• Safety risk associated with alkalinity of activating solution.

A report created by Low Carbon Living CRC [80] in Australia about the barriers and the
pathways to overcome Geopolymer commercialsation. The report includes survey about
questions for various positions such as (Materials supplier, academic researcher, contractor
. . .etc.). The questions were:

1) What barriers for implementation of Geopolymer concrete?
2) What are the suggested pathways to overcome the limitations of Geopolymer?

It was noticed that “not covered in standards” and “lack of standard and specifications”
form the highest barriers for Geopolymer widespread with (62.5 and 60%) respectively.
Lack of long-term performance data has high responses as well with 60%. Lack of aware-
ness of the mix designs and the details of Geopolymer formed (50%). Suggested pathways
were to develop standard specifications (65%) followed by further research on properties
and durability (55%). Other significant pathways includes to reduce the cost and increase
the availability had (45 and 42.5%) respectively.

The several factors that can affect the properties of the resulted (GPC) is a noteworthy
concern that limit the use of this cement. Factors including the dosage of alkaline activa-
tors, ratios of the reactive silicate in the raw materials, the mineralogy of the raw materials
are the main influent factors on the Geopolymer properties. Therefore, the difficulty in
creation and the require of special handling as it has chemicals as essential part in the
synthesis process. This fact reveals the reason of only pre-cast utilisation of (GPC).

6. Future research trends

Novel research are being developed to reduce the obstacles associated with Geopolymer
technology. One of the trends involves examining alternatives potentials Geopolymer
precursors. Moreover, with the production decline and the unexpected availability of PFA
and GGBS in next few years [47], the need for other source of raw materials is substantial
issue. Non-ferrous slags such as copper and nickel slags are potential alternatives that
recently took great consideration in research field [81–83]. Other trend of research include
using alternative activators instead the conventional alkaline solutions. Alternatives could
include waste with alkaline content such as industrial glass waste [84–86] or waste from
the bauxite residues which is called red mud [87].
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Fig. 2. One part geopolymer synthesis [17].

6.1. One-part Geopolymer system

Conventional (two-part) Geopolymer are shaped by a reaction between a concentrated
solution of alkali hydroxide, silicate and solid alumina-silicate precursor, that is, two parts
in addition to water [88]. However, the inconveniencies linked to control huge quantities
of glutinous, corrosive, and dangerous alkali activator solutions has put force on the growth
of one-part or “just add water” Geopolymer that could be used similarly to OPC [17]. In
one-part mixtures, only a dry mixture is needed in addition to water. The dry mixture is
prepared by mixing a solid alkali-activator with a solid alumina-silicate precursor with or
without a calcination step Fig. 2.

One part Geopolymer is a great step in the widespread Geopolymer utilisation especially
for in situ applications where handling alkali solutions can be difficult whereas two-part
mixtures appear suitable for precast work [89].

7. Conclusions

Based on the recent studies that dealt with the development of Geopolymer cement, the
following conclusions can be extracted:

1. Geopolymer cement is different from alkali-activated materials as there is nothing
to activate in Geopolymer but there is alkalination as it does not has N-A-S-H and
K-A-S-H products.

2. Most of the current Geopolymer use is just in the pre-cast applications such as
airports runway and retaining walls.

3. Several factors can affect the kinetic of Geopolymerisation including Si/M, Si/Al,
SiO2/M2O and Al2O3/M2O.

4. Variability in the properties of Geopolymer precursors forms the biggest concern
that limit the use of Geopolymer cement.

5. No warranty in the long-term availability of main Geopolymer raw materials such
as (GGBS) and (fly ash) and other materials which in terms form substantial barrier
opposite Geopolymer.

6. More research about the properties of alternative precursors such as biomass waste,
natural pozzolanic and non-ferrous slags materials is needed to identify their suit-
ability for this technology.

7. The main difficulty with Geopolymer technology is the use of liquid alkaline acti-
vating solutions, which are categorized as extremely corrosive materials. From an
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operational viewpoint, they are difficult and expensive to handle with significant
occupational health and safety concerns.

8. The efflorescence problem is another example of the unwanted issues associated
with Geopolymer Concrete.

9. Other barriers include lack of standard and specifications, long-term durability
reports and absence of understanding the micro/Nano-structure of Geopolymer gel.

10. Novel research trends involve alternative activators and friendly user instead the
conventional hostile alkaline solutions and the development of one-part Geopolymer
cement that just need water to create started to take great consideration in the
research field.
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